Extensions 1→N→G→Q→1 with N=C22 and Q=C22×He3

Direct product G=N×Q with N=C22 and Q=C22×He3
dρLabelID
C24×He3144C2^4xHe3432,563

Semidirect products G=N:Q with N=C22 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×He3) = C22×C32⋊A4φ: C22×He3/C62C3 ⊆ Aut C2236C2^2:(C2^2xHe3)432,550
C222(C22×He3) = C2×D4×He3φ: C22×He3/C2×He3C2 ⊆ Aut C2272C2^2:2(C2^2xHe3)432,404

Non-split extensions G=N.Q with N=C22 and Q=C22×He3
extensionφ:Q→Aut NdρLabelID
C22.(C22×He3) = C4○D4×He3φ: C22×He3/C2×He3C2 ⊆ Aut C22726C2^2.(C2^2xHe3)432,410
C22.2(C22×He3) = C42×He3central extension (φ=1)144C2^2.2(C2^2xHe3)432,201
C22.3(C22×He3) = C22⋊C4×He3central extension (φ=1)72C2^2.3(C2^2xHe3)432,204
C22.4(C22×He3) = C4⋊C4×He3central extension (φ=1)144C2^2.4(C2^2xHe3)432,207
C22.5(C22×He3) = C22×C4×He3central extension (φ=1)144C2^2.5(C2^2xHe3)432,401
C22.6(C22×He3) = C2×Q8×He3central extension (φ=1)144C2^2.6(C2^2xHe3)432,407

׿
×
𝔽